
Before the
Executive Office of the President at the White House

Office of the National Cyber Director
Washington, D.C. 20500

In the Matter of )
)

Open-Source Software Security: ) ONCD-2023-0002
Areas of Long-Term Focus and Prioritization )

)
)

COMMENTS OF CONSUMER REPORTS
November 8, 2023

Stacey Higginbotham
Yael Grauer
Justin Brookman
Consumer Reports
1101 17th Street NW, Suite 500
Washington, DC 20036



Nov. 8, 2023

Acting Director Kemba Walden
Office of the National Cyber Director
The White House
1600 Pennsylvania Avenue, N.W.
Washington, DC 20500

Dear Acting Director Walden,

Consumer Reports appreciates the opportunity to comment on the Office of the National Cyber
Director’s request for information on areas of long term focus and prioritization related to open source
software security. Last October, Consumer Reports hosted an online convening to discuss ways to
encourage widespread adoption of code written in memory-safe languages. We issued two1 reports2 on
the topic designed to help advance the use of memory safe code.

The use of memory unsafe languages has become readily apparent, threatening national security and
the quality of software used in critical businesses. Roughly 60%-70% of browser and kernel
vulnerabilities in C/C++ codebases are due to memory unsafety, which can be largely solved by using
memory-safe languages.

While we believe it impossible to eliminate memory unsafe languages entirely, there are ways to
mitigate the use of memory-unsafe language in use today. We recommend creating incentives that will
encourage companies to implement memory-safe components in existing C/C++ projects, commit to
using primarily memory-safe languages for new products and features, and address the most directly
exposed attack surface in their most critical libraries and packages (often by rewriting that code).

There are also areas where we think the government can play a role in adoption of memory-safe
languages. The government can create incentives for companies to share more information in their
vulnerability disclosures to accurately track the problems associated with using memory-unsafe
languages, and can create government-sponsored coding contests designed to promote memory-safe
languages.

Thank you for considering our comments, and if you have questions on any of these areas please
contact Stacey Higginbotham at stacey.higginbotham.consultant@consumer.org.

Sincerely,

Stacey Higginbotham, Policy Fellow
Justin Brookman, Director Privacy and Technology Policy

2 “How to Talk to Your Manager About Memory Safety” Consumer Reports and Internet Society. October 2023.
https://innovation.consumerreports.org/wp-content/uploads/2023/10/Memory-Safety-One-Pager.pdf

1 Yael Grauer, “Future of Memory Safety Challenges and Recommendations” Consumer Reports. January 2023.
https://advocacy.consumerreports.org/wp-content/uploads/2023/01/Memory-Safety-Convening-Report-1-1.pdf

mailto:stacey.higginbotham.consultant@consumer.org


Table of Contents

● Secure Open-Source Software Foundations
○ Fix critical software elements first ……………………….…1

● Reducing entire classes of vulnerabilities at scale
○ Mitigating the harms of unsafe code ……………………… 2
○ Options for incremental rewrites of code packages …….. 3
○ Incentivize data-sharing about memory-unsafe code ……3
○ Support memory-safe libraries and coding programs ……4

● Developer Education
○ Change the developer pipeline ……………………………. 5
○ Shine a light on memory-safe code adoption ……………. 6

● Behavioral and Economic Incentives to Secure the Open-Source Software Ecosystem
○ Convince executives to invest in memory safety ………... 6



1
Questions for Respondents:
We are seeking insights and recommendations as to how the federal government can lead, assist, or
encourage other key stakeholders to advance progress in the potential areas of focus described below.

Please consider providing input on these areas by addressing the questions below:
• Which of the potential areas and sub-areas of focus described below should be prioritized for

any potential action? Please describe specific policy solutions and estimated budget and timeline
required for implementation.

• What areas of focus are the most time-sensitive or should be developed first?
• What technical, policy or economic challenges must the Government consider when

implementing these solutions?
• Which of the potential areas and sub-areas of focus described below should be applied to

other domains? How might your policy solutions differ?

Potential Areas of Focus
● Area: Secure Open-Source Software Foundations

○ Sub-area: Fostering the adoption of memory safe programming languages
■ Supporting rewrites of critical open-source software components in memory safe

languages
■ Addressing software, hardware, and database interdependencies when

refactoring open-source software to memory safe languages
■ Developing tools to automate and accelerate the refactoring of open-source

software components to memory safe languages, including code verification
techniques

■ Other solutions to support this sub-area

Fix critical software elements first
It’s clear that critical open source software components need to be rewritten in memory-safe languages.
However, since it’s impossible for all organizations to rewrite everything all at once, addressing
dependencies and rewriting critical components in memory safe languages would improve the
ecosystem.

When companies or organizations are trying to figure out which components are critical and should be
rewritten first, we recommend the following steps:

● First, companies should evaluate their code to understand what software the organization is
using, as well as understand the whole supply chain for that software. Modern software often
pulls in third-party code, such as software libraries from multiple sources.

● Second, organizations should figure out where their biggest source of risk is. The source of risk
might be the component with the most vulnerabilities reported the prior year, or components
with network and privilege boundaries. Managers might need to reach out to external security
experts and check the results of public code reviews.

● Finally, companies need to assess the blocks to memory-safe solutions such as a lack of
capital, software dependencies within a service or product, available staff who can code in



2
memory-safe languages and a willingness to change. Once identified, start knocking those
barriers down.

This means that getting to memory-safe code is both a code problem and a business process problem
that companies need to tackle. It’s also worth noting that in some cases, memory safety isn’t yet
possible. For example, IoT/embedded devices continue to be built using C/C++ for platform
compatibility.

There are also gaps in memory-safe software across products today, but there are ways the
government could continue to incentivize industry to address those gaps. Right now, it’s not yet
possible for governments to only buy memory-safe software.

For example, one can’t say routers must be memory-safe top to bottom because no such products
currently exist. But it may be possible for the government to say that newly developed custom
components have to be memory-safe to slowly shift the industry forward. This would require some type
of central coordination and trust in that system. The government could ask for a memory safety road
map as part of procurement. The map would explain how the companies plan to eliminate
memory-unsafe code in their products over time.

○ Sub-Area: Reducing entire classes of vulnerabilities at scale
■ Increasing secure by default configurations for open-source software

development
■ Fostering open-source software development best practices, including but not

limited to input validation practices
■ Identifying methods to incentivize scalable monitoring and verification efforts of

open-source software by voluntary communities and/or public-private
partnerships

■ Other solutions to support this sub-area

Mitigating the harms of unsafe code
The way to reduce entire classes of vulnerabilities at scale is to use memory safe languages. This can
be expensive, time consuming, and in some industries, such as embedded and IoT, will still leave
behind legacy code in C/C++. It’s important to note that while there are definitely things that can be
done to reduce issues in C/C++ code (such as code review, fuzzers and sanitizers, exploit mitigations,
privilege separation, etc.), these steps do not result in memory safety or memory safe code.

Sticking with memory-unsafe code is not an option going forward. The only scalable way to accomplish
memory-safe code going forward is with languages that are considered memory-safe such as Rust.
While developers using memory-unsafe languages can attempt to avoid all the pitfalls of these
languages, this is a losing battle, as experience has shown that individual expertise is no match for a
systemic problem. Even when organizations put significant effort and resources into detecting, fixing,
and mitigating this class of bugs, memory unsafety continues to represent the majority of high-severity
security vulnerabilities and stability issues. It is important to work not only on improving detection of
memory bugs but to ramp up efforts to prevent them in the first place.



3

Options for incremental rewrites of code packages
However, we cannot replace all existing memory unsafe code, so organizations must include strategies
to mitigate the harms of memory-unsafe code. An incremental approach targeting components of larger
software packages is more feasible than aiming for complete rewrites of large and complex software
packages. It may make sense to isolate components (i.e. sandbox them), compile them to something
like WebAssembly, or rewrite them in a memory-safe language like Rust. These options present a
number of trade-offs, including implementation effort, execution performance, and safety. For example,
code that is otherwise security critical in a logic sense (like JITs, cryptographic primitives, etc.) may be
comparatively worse for rewriting.

Sandboxing doesn't prevent memory safety bugs from causing problems within a sandbox. In particular,
process-based sandboxing (unlike solutions like WebAssembly and Rust) hasn't historically prevented
attackers from exploiting memory safety bugs to run arbitrary code within the sandbox. And, this gives
them more freedom to exploit bugs in the sandbox itself or the trusted code interfacing with the
sandbox code.

Compiling to something like WebAssembly addresses the limitations of process-based sandboxing, but
currently comes at a runtime performance cost and can add significant toolchain complexity.

Rewriting in a memory-safe language like Rust has a high up-front cost for implementation, and may
temporarily increase the number of logic bugs as a result of the rewrite (the bug count will go down over
time, like it did for the original software), but the result is likely to be both fast and safe.

Which approach makes sense depends heavily on the desired outcome as well as available resources.
Stakeholders may not agree on what makes sense in any given situation. In many cases, it is even
desirable to use multiple techniques—Rust can be used to eliminate memory safety bugs, and running
components in isolation with least privilege (for example, by compiling them to WebAssembly) can be
used to deal with supply chain attacks.

Incentivize data-sharing about memory-unsafe code
There is a key role the government or industry can play when it comes to reducing memory safety
issues. Since a primary way to mitigate memory-unsafe code is to identify that code and rewrite,
recompile, or otherwise take action, it would be helpful to incentivize participants to share their findings
when they run across memory-unsafe libraries and software packages.

This would be especially valuable for critical libraries and packages that handle sensitive data and
support vulnerable users—medical data, government data, and tools used by journalists and human
rights activists. It should also start with the softest and most directly-exposed attack surface3. But
making informed decisions would require additional data that may be hard to get.

It’s a problem currently faced by the CVE, the database of Common Vulnerabilities and Exposures,
which classifies vulnerabilities, and uses a Common Vulnerability Scoring System (CVSS). However the

3 Chris Palmer, “Prioritizing Memory Safety Migrations,” Noncombatant.org, April 11,
2021, https://noncombatant.org/2021/04/09/prioritizing-memory-safety-migrations/



4
root causes of bugs are often vague, meaning that we lack meaningful visibility into the scale of the
problem for many types of vendors.

For example, 4 Apple’s security bulletins currently don't provide enough details to distinguish
C/C++-induced memory vulnerabilities from logic bugs. And the metrics we have on the percentage of
vulnerabilities that are due to memory unsafety are for only some cross-sections of the industry, such
as Mozilla, Android, and Microsoft, which makes our understanding of the current state incomplete. It
would be great to get broad, updated statistics on the percentage of vulnerabilities due to memory
unsafety.

Support Memory-Safe Libraries and Coding Programs
The government can play a role by investing in and providing ongoing support for memory-safe FIPS
certified cryptographic libraries. This would allow developers to use memory safe code instead of, e.g.,
openSSL, which people often revert to simply because those libraries have already been certified as
being safe for government use.

The government can also create incentives for better code by creating and promoting competitions that
can help create the conditions for a “space race” for memory safety. This would include reasons to
upgrade to memory-safe libraries that are not just security-driven: replacements that are faster, better,
have additional features, etc. The carrot approach for memory safety may include not just decreased
future costs in cybersecurity, but also reliability and efficiency. Ideally, memory safety will be viewed as
a proxy for funded, competent risk management strategy and for software that's currently evolving and
malleable.

Additionally, creating an industry-wide focus on safety-by-design means that developers begin to write
memory-safe code by default The goal is to speed along the transformation of the software industry so
that we no longer tolerate and normalize companies placing the burden of staying cyber-safe on the
enterprises and individuals who are least capable of doing so. Instead, products should be safe by
design, and we should be increasingly intolerant of manufacturers who decide to choose unsafe
practices for making products.

In some cases, even developers unaware of the large percentage of security bugs stemming from
memory-unsafe code would be able to minimize them, if the industry norm becomes a state where
memory safety is incorporated by default.

The PR incentive would work best if memory safety became easier to implement. The government
could incentive tooling that would make this easier. Options that may help move the needle might be
funding projects to sponsor new OSes or support existing Linux distros, or to team up with companies
and other organizations to have a cash prize for the top 20 libraries that can securely use memory-safe
alternatives.

As a peripheral example, Let’s Encrypt had the goal of reducing the friction of deploying HTTPS by
automating deployment and offering certificates free of charge, so they built the systems to do that. It
was free and automated, and once HTTPS was ubiquitous enough, it became mandatory for crucial
web platform features like service workers.



5

○ Sub-Area: Developer education
■ Integrating security and open-source software education into computer science

and software development curricula
■ Training software developers on security best practices
■ Training software developers on memory safe programming languages
■ Other solutions to support this sub-area

Change the developer pipeline
Before we even look at industry-wide issues with memory safety, it’s important to address the pipeline.

Currently, some computer science courses expect students to do much of their systems-level work in C,
which is notoriously memory-unsafe. Professors have a golden opportunity here to explain the dangers
of C and similar languages, and possibly increase the weight of memory safety mistakes on exercise
grading, which proliferate in student-written code just as they do outside of the classroom. Another
opportunity is to switch languages for part of those courses. However, teaching parts of some courses
in, for example, Rust could add inessential complexity, and may be impractical in some cases. There’s
a hard upper limit on how many new ideas and the number of programming languages you can throw at
someone in a class before their brain shuts off, and many computer science classes are already at
capacity.

There’s also a perception that memory-safe languages, namely Rust, are harder to learn and will be
difficult to use with hardware, which may dissuade people from learning it in the first place.

Professors also want to do their best to make sure their students graduate with the skills that will help
them find the type of job they want, which becomes a chicken and egg problem—students often learn
to program in C assuming it is the universal language that will allow them to be easily employable in the
future, which results in companies wanting to hire students who can code in memory-safe languages
such as Rust to have a smaller hiring pool.

To change this pattern, the industry itself must shift.

To help push the industry, the government could provide data on which companies are hiring people
who know memory-safe languages, and which require C/C++ (which will also change with time). It
might also be useful to get information on companies providing training in memory-safe languages to
their engineers or writing specific projects in them.

The lowest-hanging fruit for memory safety is brand new code, but to be successful, we must recognize
that some programmers may find memory-safe languages more difficult or be resistant to shifting to
them. This can be mitigated by explaining that memory-safe languages force programmers to think
through important concepts that ultimately improve the safety and performance of their code. In some
cases, the concerns exist at executive levels of an organization. Management may distrust new
languages, as well as have concerns that tools may not work properly. Perhaps the tools are workable
but there is the sense that C/C++ equivalents are more reliable or easier to use. People realizing they



6
need new toolchains on platforms they support—and need to be able to debug them—leads to
significant ecosystem drag. It requires significant activation energy to bootstrap an ecosystem into
something government, organizations, and individuals can buy into without having to build expertise in
the tool chain.

Shine a light on memory-safe code adoption
Outside of providing guidance to computer science professors and coding programs, or providing data
about job prospects for coders programming in memory-safe languages, there is also an opportunity for
the government to fund research.

For example, we could learn from the lessons of MANRS4 (Mutually Agreed Norms for Routing
Security), a global initiative that helps reduce the most common threat to the security of global Internet
routing infrastructure. Routing security is a similar collective action problem to memory safety, and the
MANRS "actions"—a set of practices that improve routing security—serve as a voluntary set of norms
that stakeholders in internet routing can abide by to secure their smaller piece of the bigger picture,
adding to the aggregate state of routing security.

When applied to memory safety this could involve two tactics: ensuring that memory safety is a clear
basis for competition between similar offerings (for example, who has pledged to adopt memory-safe
systems and software?) or worked-through case studies (or horror stories) that show the serious risks
and costs of memory unsafety. Relating back to the MANRS initiative in routing security, a useful case
study was the early 2022 incident5 where Twitter was able to recover quickly in the face of Russian
network hijacking, having learned a lesson from a few years before when Myanmar did the same thing
and gravely impacted Twitter operations worldwide. Can we show that companies both gain in the
market and avoid costly risks by making their products more memory-safe?

● Area: Behavioral and Economic Incentives to Secure the Open-Source Software Ecosystem
○ Frameworks and models for software developer compensation that incentivize secure

software development practices
○ Other solutions to support this sub-area

Convince executives to invest in memory safety
One challenge at the private company level is convincing managers and executives to invest in
memory-safety. Obviously, some of the prior actions, such as using data and government influence to
equate memory-safe code with securely and competently designed software will help, but executives
may need greater incentives, more focused on their ROI.

Developers can tell managers that memory safety is an up-front investment that will reduce a
company’s long-term support costs. Having fewer vulnerabilities will reduce an expensive triage

5 Aftab Siddiqui, “Lesson Learned: Twitter Shored Up Its Routing Security,” manrs.org, March 29, 2022,
https://www.manrs.org/2022/03/lesson-learned-twitter-shored-up-its-routing-security/

4 “Mutually Agreed Norms for Routing Security,” Internet Society, accessed Nov. 8, 2023,
https://www.internetsociety.org/learning/manrs/



7
process, and they will have fewer stability problems and nonsecurity crashes as well as performance
improvements due to concurrency.

The biggest memory-safety challenge appears to be both technical and commercial. How do we deal
with very large legacy codebases written in unsafe programming languages? Those working in industry
pointed out that the social and commercial incentives to encourage fully addressing a problem of this
scale do not exist.

To get to a place where everything is memory-safe, organizations need some regulatory or market
incentive. There are many barriers to adoption, even as CISA, FTC, and the NSA push companies
toward addressing memory-safe code. Getting over the perceived barriers to adoption and the time and
monetary costs requires effective advocacy. Engineers at companies need support for this type of work
because they often don’t have sufficient internal resources, and the options for hiring external
contractors to deal with the security bugs is limited.


